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Abstract——Spatial models of voting are widely used in Economics and Political Science. Spatial
theory is an attractive framework ta analyze choice because Euclidean geometry is easy to visualize
and the language of politics is full of spatial references. Empirical tests have generally supported the
theory but the estimation methods employed to produce the spatial representations of voters have
raised serious statistical issues which have not been fully resolved. One of these issues is determining
the number of dimensions. This is a difficult problem because the number of estimated parameters
increases with the number of dimensions. We show a solution for this problem in this paper. We
assume a uniform distribution of voters through an N-dimensional unit hypersphere with perfect
spatial voting and equally salient dimensions. We then solve for the projection of this perfect voting
. onto one dimension and the resultant classification error. We derive the probability density function
of the classification errors which can be used to calculate the likelihood that a sample of votes was
drawn from an N-dimensional hypersphere. Our Monte-Carlo investigation into the properties of this
likelihood function shows that it can be used reliably for low N with small sample sizes.

1. INTRODUCTION

Spatial voting models are widely used in Economics and Political Science. The early work of
Anthony Downs [1957] and Duncan Black [1958] sparked the development of a large body of
theory which uses simple gecmetric representations of individual preferences to model policy
choice in legislatures and in the mass electorate.! Spatial theory is an attractive framework to
analyze choice because Euclidean geometry is easy to visualize and the language of pol1tlcs is
replete with spatial references.? Empirical work has generally supported the theory.?

The dimensions of a spatial map of individual preferences represent the fundamental attributes
that individuals use to evaluate policy alternatives. In our view, the best way to think about what
these dimensions mean is to place them in the context of the belief-systems model of Converse
[1964). Converse defines a belief system “as a configuration of ideas and attitudes in which the
elements are bound together by some form of constraint or functional interdependence” [1964,
p. 207). In the real world of politics, constraint means that certain issue positions are bundled
together, and the knowledge of one or two issue positions makes the remaining positions very
predictable. For example, to know that a member of the House voted against the Persian Gulf
War and in favor of the 1991 Civil Rights law, makes it highly likely that the member is in favor
of increased spending to aid the homeless and opposed aid to the Nicaraguan Contras during
the 1980s. These relationships between issues are neatly summarized by the words “liberal” and

18ee Krehbiel [1988] for an excellent bibliographic essay on the spatial theory of legislatures. For a general essay on
spatial theory, see Austen-Smith [1983]. Ordeshook [1986] puts spatial theory within the context of game theory
and integrates it with political theory in general. For more recent developments, see Calvert [1985], Banks {1990],
and [Austen-Smith and Banks 1989, 1990].

20onsider the termo: “lcft,” “right,” “moving left,” “centriat,” and so on.

3See the extensive analyses of Enelow and Hinich [1984] on U.S. elections, Earlier work on U.S, elections was
done by Weisberg and Rusk [1970], Rusk and Weisberg [1972], Rabinowitz [1976], Cahoon [1978}, and Poole and

Rosenthal [1984]. Applications to congressional voting include MacRae [1958, 1970}, Krehbiel and Rivers [1989,
1680}, and Poale and Rosenthal [1989, 1991].
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“conservative” and followers of U.S. politics can easily list the issue positions normally associated
with these words. . :

It is important to note that “liberal” and “conservative” do not necessarily indicate a cokerent
political philosophy. As Hinich and Pollard [1981, p. 325] point out, it is not necessary that
this observed consistency derive “from anything so strong as ideology ... The behavioral labels
we observe are more likely derived from ad hoc responses to changing conditions and political
fortunes.” :

In any event, the purpose of our paper is not to delve into the nature of “ideology.” There is now
a fairly large body of literature which finds low dimensionality in various types of preferential data.
The question we address below is how to determine the number of these dimensions. In terms
of the theory of individual choice, the number of dimensions is irrelevant to the mathematical
apparatus of the model. However, determining the number of dimensions in empirical applications
is quite another matter.

Given a matrix of individual preferences or choices, a variety of multivariate techniques—-
factor analysis, multi-dimensional scaling, cluster analysis—can be used to estimate dimensions.
Usually, one, two, and three (or more) dimensional models are estimated and a measure of fit
(r-square, STRESS, the number of eigenvalues greater than one, etc.) is used to determine the
“best” compromise between parsimony and explanatory power. Because increasing the number

of dimensions always increases the fit of these techniques, the decision of the researcher that the

dimensionality is k rather than & — 1 or & + 1 1s, in effect, a decision that the increase in fit
from k — 1 to & dimensions is “significant” while the increase from k to k + 1 dimensions is not
“significant.”

In this regard, estimating the number of dimensions is like simple OLS in that a perfect fit
can be obtained by having as many independent variables (dimensions) as there are observations
(voters). However, in simple OLS whenever an independent variable is added to the model
only one additional parameter must be estimated and standard statistical theory can be used to
determine the “significance” of the contribution of the additional variable. In contrast, estimating
a spatial voting model requires that ideal points for every voter be estimated for every dimension.
Consequently, adding a dimension represents an increase in the number of parameters equal
to the number of voters. This presents some obvious statistical problems for determining the
“significance” of the added dimension.*

In addition, simple OLS rests on the presumption that the model is correctly specified so that
statements about the fit of the model and the significance of the estimated parameters are made
against this “fixed” background. In contrast, spatial voting models specify a certain sort of choice
behavior given a well defined geometry-—the number of dimensions is not specified.

Given these thorny problems, determining dimensionality in spatial voting models empirically
is an unsettled and controversial topic {Poole, 1988; Koford, 1989; Poole and Rosenthal, 1990}
The purpose of this paper is to show a new way of approaching the problem of determining
dimensionality within a maximum likelihood framework.

Our work is motivated in part by Koford’s [1989] observation that a useful null model for
evaluating estimated spatial models is to assume that the true space is of high dimensionality with
perfect spatial voting. The projection of this perfect voting down onto a lower dimensional space
equal to the number of dimensions being estimated provides a useful comparative benchmark,
In particular, the approach we take is to assume a uniform distribution of voters within an
n-dimensional hypersphere of radius one. We assume perfect spatial voting and solve for the
projection of the perfect votes onto a single dimension and the resultant classification error. The
probability density function we derive can be used to compute the likelihood—based upon the

marginals of the votes and the observed classification percentages—that a sample of votes was
drawn from an n-dimensional hypersphere. : .

1A tempting, but illusory, fix for this problem is not to estimate individual ideal points at all but to estimate the
parameters of a distribution from which the ideal points are assumed to be drawn. This solves the parameter
proliferation problem in that, like simple OLS, only one (or two) additional parameters are estimated for each
dimension. However, this is a case of throwing the baby out with the bathwater. The whole point of using spatial
models is to learn something about chojce behavior of individuals. This information is simply thrown away by
taking this approach. » : - o
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In Section 2 we sketch in some detail how our model works in two dimensions and then turn
to a discussion of the numerical results for any value of N. (The detailed derivations for the
N-dimensional case are shown in the Appendix.) In Section 3, we show a Monte Carlo study
of the likelihood function and, in Section 4, we show an empirical application to congressional
voting. :

2. THE PROJECTION OF PERFECT N-DIMENSIONAL VOTING
ONTO ONE DIMENSION

A. The Two-Dimensional Case

Assume that the voters are uniformly distributed over the unit circle and that all votes are
binary—the voters are always faced with only two alternatives on any particular vote. In addition,
assume that the alternatives are drawn from a uniform distribution over the unit circle and that
voters vote for the closest alternative in terms of Euclidean distance. As an example, suppose
that all votes are ties—b0 percent to 50 percent. Figure 1 shows how several such votes would
project onto a single dimension.
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Figure 1. Projection of votes.

The line through each circle in Figure 1 is the perpendicular bisector of the line joining the
two policy alternatives. Note that the angle of this “cutting line” determines how noisy the
projection is onto one dimension. In Figure 1A the cutting line is perpendicular to the projection
dimension so that the cutting point, c, perfectly divides the Y’s from the N’s. The percentage of
the individual votes correctly classified would be 100 percent. In Figures 1B and 1C, the angle
of the cutting line is 45 and —45 degrees, respectively. These two projections produce the same
cutt.iqg point as in Figure 1A but the percentage correctly classified falls to 75 percent. To see
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this, note that the shaded regions are areas of the plane which, when projected onto the single
dimension, will be incorrectly classified. These shaded “pie slices” make up 25 percent of the area
of the circles. Finally, in Figure 1D the cutting line is parallel to the projection dimension so that
only 50 percent—which is simply equal to the marginals of the vote—is “correctly” projected.
The cutting point can be at either end of the projection dimension,

The general case for a two-dimensional projection is shown in Figure 2. Without loss of
generality, we can set the origin of the space to the center of the circle and place the projection
dimension through the origin. The shaded portion of the circle represents the proportion of the
voters in the minority. The angle ¢ and the distance from the origin, rp,, determine the orientation
of the minority region to the projection dimension and the size of the minority region respectively.
The cutting point is given by r,sec$ and the “pie slices” produced by the line through the
cutting point and perpendicular to the projection dimension constitute the classification error
when projected down onto the dimension. The cutting point minimizes the classification error.
This fact is easily shown through a simple exercise in geometry (see the Appendix).

Minority
/Shaded Areca)
Culting point
Classification &
Error
Cutting line

Classification
Error

~———Classificalion Dimengion

Figure 2. General case of two-dimensional projection.

In terms of Figure 2, the minority proportion, m, is a function solely of the distance of the
cutting line from the origin; namely :

_cos iy — ST 12,
m= - . (1)

In contrast, the classification error—the ratio of the sum of the two “pie slices” to the area of the
unit circle—is a function of r,,, and ¢. In.terms of ¢, two cases have to be considered. First, as
shown in Figure 2, ¢ is such that the cutting line intersects the projection dimension; and second,
¢ is large and the cutting line does not intersect the projection dimension. When ¢ is such that
the cutting line exactly intersects the end of the projection dimension, then ry, sec¢ = 1. The
angle at this point is precisely equal to cos™!(r,,). Beyond this angle, as was demonstrated with
Figure 1D, the classification error is equal to the minority proportion. The relationship is given

by
€(¢)={ [ e ]: 0 < ¢ < cosiry,),
m, if COS—l(rm)sqsg %’

uthere We use ¢ to denote classification error in general and ¢(¢) denote the classification error

given a specific angle, ¢. '
'For two dimensions, our assumption that the alternatives are randomly drawn from a uniform

distribution over the circle is equivalent to assuming that ¢ is uniformly distributed. Implicit in

(2

»a LY
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this assumption is the assumption that the dimensions are equally salient and that, given m, the
minority can be at any orientation in the space. The distribution of ¢ is, therefore,

2 0 z
f(¢)={' e (3)

0 otherwise.

Given the assumptions of our model and equations (1), (2), and (3), the likelihood that a
sample of votes was drawn from a two-dimensional space can be calculated. Specifically, suppose
we have a sample of size g. Let m be the observed minority proportion and ¢; be the classification
etror of the j* vote. Given m, equation (1) can be used to solve for rm;; €; and rmj can be used
in equation (2) to solve for ¢;; and ¢; and cos™!(rm;) can be used in equation (3) to solve for
the likelihood. Let h(¢;) denote the likelihood for the 5™ vote. Given m; and ¢;, h(¢;) is

%s 0 < ¢3 < cos“l(rmj),
h{g;) = { : (4)
% c:ws"l(rm,') d¢ = % [125 - COS-I(T‘mJ')] ! COS_I(T‘mj) < ¢J S %

The likelihood function for the two-dimensional case is, therefore,
2\? 2

¥, = {1—, — cos— (r S i < 1(11'".1'):
i= =
[2 5 1( ""i)] 1 cos 1('m.f) S ¢J S g

Although the counterparts to equations (1), (2), and (3), are nontrivial for more than two
dimensions (equations (A.7), (A.6), and (A.8) in the appendix, respectively), the likelihood func-
tion over ¢ for more than two dimensions is conceptually straightforward. Because the sample
observations we are interested in are m; and ¢; not m; and ¢; pairs, what we need is the likeli-
hood function over ¢, not ¢. However, equation (4) is very useful for calculating the point masses
which carry over to the likelihood function over €.

For N = 2, regardless of the value for m, the density over ¢ is uniform. This is not the case
for the density over ¢. To see this, let ¢ = Y(¢) stand for equation (2). Therefore, solving for ¢,
we get ¢ = y~!(¢). Using the standard univariate change of variables formula, we can write the

density over ¢ as
-1 O O))]
9(e) = {f [v=*(0)] l de

where

' 056<m’

, ) (6)
2 (2 —cos™Yry)], € =1m,

where the point mass from equation (4) maps onto m. Unfortunately, inspection of equation (2)
shows that y~!(¢) cannot be solved analytically. Consequently, we must derive g(¢) numerically.
Figure 3 graphs equations (4) and (6) for an m of 0.35.

The mapping of ¢ to ¢ is one to one but non-linear. Note that as ¢ approaches the critical value,
cos~1(r.,), g(¢) rises rapidly near m. Because fixing m determines r,,,, decreasing m increases ,,
and decreases the critical value, cos™*(rm). Since h(#) is uniform with value of 2 for values of ¢
less than cos~!(r,,) regardless of the value of m, this has the effect of increasing the point mass
as mn decreases. In terms of g{¢), as m decreases—even though the point mass increases—the
likelihood values increase over 0 < ¢ < m. For example, when m = 0.50, g(¢) is a uniform
distribution with value 2.0. As shown in Figure 3, g(¢) is always greater than 2.120 for m = 0.35.
For m = 0.25, g(¢) is always greater than 2.390; and so on.

B. The General Case

Our .assumptions for the general case mirror those for two dimensions. We assume that voters
are meformly distributed through a unit hypersphere, that all votes are binary, and that the
N dimensions are equally salient. The minority, m, is the volume defined by the distance, rm,
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Figure 3. Two-dimensional projection with margin equal to 0.35.

from the origin of the hypersphere to the hyperplane which separates the two choices. We
will refer to this hyperplane as the boundary plane. Without loss of generality, the projection
dimension is assumed to pass through the center of the hypersphere. The angle between the
projection dimension and the vector normal to the boundary plane which passes through the
center of the hypersphere is denoted as ¢. The cutting point is that point at which the projection
dimension intersects the boundary plane. As with the two-dimensional case, this point is given
by cos~!(ry,). Finally, the error is the sum of two “orange slice” volumes in N-space.

Equation (A.7) in the appendix—the counterpart to equation (1) above—gives the relationship
between m and r,,. The complexity of the equation obscures an important geometric fact about
this relationship; namely, if m is fixed, then as N increases r,, decreases (see Appendix). This
is due to the fact that, as N increases, proportionately more of the volume is concentrated near
the center of the unit hypersphere. Hence, if r,, were a fixed constant, then m would fall as N
increased.

The distribution of ¢ for ¥ > 2 is given in equation (A.8). It is the sine of ¢ taken to the N — 2
power and multiplied by a constant. As shown in equation (4), the point mass which is common
to both h(¢) and g(e) is found by taking the integral of f(¢) from cos™1(r,) to % Intuitively,
it is clear that, as N increases, the probability that ¢ = m increases. Hence, as N increases, the

value of the point mass must increase. We Prove in the appendix that as N gets large, the point
mass converges to 1 — 2m.
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As was the case for N = 2, we must derive g(¢) numerically for N > 2.° Returning to Figure 3,
fix m and consider the situation for N > 2. If ¢ is very close to zero, then the likelihood value
for N = 2 must be greater than N = 3 and so on in order of N; that is, go(€) > gn+1(€)-
Conversely, for an observed error very close to m the likelihood value for N = 2 will be smaller
than N = 3 but, as long as the error is not exactly equal to m, there will be a value of N such
that g,(€) > gn_1(€) and gn(€) > gny1(¢). This is so because the point mass increases in N.

Another property that follows from the point masses increasing in N, is the fact that, as N
increases, g(¢) must become very small over most of its range and then rise very rapidly near m.

Indeed, for large N, g(e) approaches a right-angle “J” shape. These properties are illustrated by
Figure 4.
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Figure 4. g(¢) fanctions for m = .35.

~ Figure 4 shows g(e} for m = 0.35 and N equal to 2, 3, 4 and 5. The fact that ga(e) > gale) >
-++ > gn(€) for ¢ sufficiently close to zero, and the fact that g,(€) > gn-1(€) > --- > ga(e) for ¢
sufficiently close to m, means that between 0 < ¢ < m, g,(¢) must cross all the other densities,
@n—1(€) must cross those densities for N — 2 and below, and so on.

The crossing points of the g(€)’s can be clearly seen in Figure 4. Let €n,41 denote the value
of ¢ such that g,(€) = gn_1(¢) and let gn,4; denote the value g,(€) corresponding to €ng41. The
properties of g(€) discussed above imply that €33 < €24 < -+ < €9y, €34 < €35 < - < €3, and 50
on; and that gog < gag < --- < gan, 934 < gas < --- < gan, and so on.

Figure 4 also shows the important fact that, for a fixed m and ¢, the likelihood values over
N are single peaked. This flows directly from the fact that g{¢) is monotonically increasing.
Between zero and approximately 0.20, ga{e) > ga(€) > ga(€) > gs(¢), between approximately 0.20
and approximately 0.23, ga(e) > ga{€) > ga(€) > gs(¢), and so on.

3. MONTE CARLO TESTS OF THE LIKELIHOOD FUNCTION

In order to obtain our theoretical results, we assumed that the number of voters was infinite
30 that we could treat the binary choices as hypervolumes. As a practical matter, a sample
of m and ¢ pairs will be drawn from a policy space with a finite number of voters. This will
not greatly affect our results because, if the voters are treated as a random sample from a
uniform distribution through the hypersphere, then the larger the number of voters the closer
the approximation between the hypervolumes and the corresponding ratios of types of voters

*In particular, we computed g{e) for N's of 2 through 8 for all values of m and ¢ from .025 to .500 in thousandths
(i.e, .025, .026, 027,..., .498, .499, .500). That is, we produced four 476 by 476 tables. These tables were
computed on the CRAY YMP at the Pittsburgh Supercomputer Center and were used in the Monte Carlo and
empirical analyses below. The tables are available form the authors on request.
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to the total sample size. However, for a fixed number of voters, the accuracy of the likelihood
function must fall with N. Consequently, we performed a Monte Carlo study to determine how
sensitive our likelihood function was to various values of the number of voters and the size of the
sample of m and ¢ pairs. A portion of our study is shown in Table 1.

Table 1. Monte Carlo tests.
Number of Votes
100 : 500 1000
True Dimensionality

2* 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

Experiments With 100 Voters

2 100# 42 3 0 o 0 100 39 0 a o] 0 100 37 0 1} 0

3 0 57 83 46 20 6 o 61 95 &7 21 4 0 63 93 59 2 4
4 0 1 14 54 75 79 0 1] 5 43 74 81 0 o 7T 41 74 81
5 0 0 o 0 5 15 o] 0 0 0 5 15 8] 4] 0 0 5 15
6 0 4] 0 ¢} 0 o o] 0 0 0 D a 0 0 0 0 0
7 0 0 0 1] 0 1] 0 [} a 0 1] 0 0 ] o 0 [} 4]
8 1] 0 0 ] )] 0 4] 0 0 1] 0 0 1] )] 0 1] 0 o

Experiments With 500 Voters
2 100 2 4] 0 0 0 100 4] 0 0 0 0 100 Q o] ] 4] 4]
3 0 96 18 0 o] 1] 0 100 13 D 0 0 0 100 8 0 ] 0
4 0 2 79 62 10 1} 1] 0D 87 64 i} 0 0 )] 92 65 2 ]
5 1] 0 3 38 78 42 [ 1] 0 36 94 45 0 0 0 35 94 52
6 a. o 0 0 12 51 ] a 0 0 1 55 [t} 0 1} 4 48
7 0 4] 0 0 o 7 4] 0 o 0 [§] 0 0 4 0 0 0 0
8 4] 4] 4] 0 0 o} 0 0 0 0 o] 1] 0 0 0 [4]
Experiments With 1000 Voters

2 100 1 8] 0 ] 0 100 ¢} ¥ 0 0 0 100 i} 0 0 0 0
3 0 96 8 0 1] ] 0 100 1 0 a 0 0 100 a o 0 0
4 0 0 8 22 1 ¢ 0 0 99 22 0 0 0 0 100 8 0 1
5 0 0 6 72 53 10 0 ] 0 78 54 2 ] a 0 92 35 1
6 Q 4] ] 6 42 72 0 1] 0 0 46 91 ] a 4] 0 65 92
7 ] 0 0 0 4 17 0 0 0 0 7 0 0 0 1] 0 7
8 1) 0 o] 1 0 0 [} 0 o] 4] 0] a ] 0 4]

* For each combination of Voters and Votes, the columns give the distribution of 100 samples
taken from a space with the indicated dimensionality across values of N.
# Each cell entry is the mmnber of samples with maximum likelihood at the row value of N,

Table 1 consists of 9 cells with 600 experiments per cell for a total of 5400 experiments. Each
of the 9 cells is a combination of a number of voters—100, 500, and 1000—and a number of
votes—again, 100, 500, and 1000. For each combination of voters and votes we drew 100 random
samples from 2-, 3-, 4-, 5-, 6-, and 7-dimensional spaces for a total of 600 random samples. For
each sample we computed the likelihood that it was drawn from a 2-, 3-, 4-, 5-, 6, 7-, and 8-
dimensional space. Each entry in a column (the true N) within one of the 9 cells of Table 1 is
the number of samples with a maximum likelihood corresponding to the row value for N. For
example, consider the 100 random samples with 500 voters and 500 votes taken from a space with
N = 4. None of the 100 random samples had a maximum likelihood which peaked at N = 2,
thirteen of the 100 samples peaked at N = 3, and eighty-seven peaked at the true value N = 4.

8The voters were drawn from a uniform distribution through the hypersphere and the voters were created by
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The results in Table 1 show that the number of voters in the sample is more important than
the number of votes. Holding fixed the number of voters and doubling the number of votes from
500 to 1000 has very little effect. In contrast, holding the number of votes fixed and doubling the
number of voters from 500 to 1000 has a much greater effect. As expected, with smaller numbers
of voters there is a distinct downward bias—the likelihood function tends to peak at a value one
less than the true value,

4. AN APPLICATION TO ROLL CALL VOTING IN THE U.S. CONGRESS

Given the quality of cur Monte-Carlo results with 500 voters and above, a natural application
for our likelihood function is the recorded roll call votes in the U.S. House of Representatives
because it has had over 400 members since 1903. We obtained two € vectors for testing. The
first is from Poole and Rosenthal’s [1991] dynamic one-dimensional scaling of the House roll calls
from 1789 to 1985 {Congresses 1 through 99). Poole and Rosenthal’s [1989, 1091] D-NOMINATE
technique maximizes a likelihood function—it does not minimize classification error. In addition,
the legislator coordinates are constrained to be simple polynomial functions of time. Because of
this, the ¢ vector from the D-NOMINATE one-dimensional scaling will tend to be inflated. In
particular, it is possible for an observed € to be greater than m for a roll call. If this occurred,
we set e = m,

We obtained the second ¢ vector by performing a simple Guttman scaling of each matrix of
House roll call votes. The ¢ vector from the Guttman scaling will tend to be smaller than that
from D-NOMINATE because Guttman scaling minimizes classification errors and each Congress
was scaled separately.

Before turning to the results, a word of caution is necessary. Our approach assumes that the
the m and ¢ vectors are random draws. That is, each pair of m and ¢ elements in the sample
is independent and identically distributed. The observed m and ¢ vectors from various scaling
technologies do not possess this property. This is because any scaling/projection technigue must
work with the rectangular matrix (voters by votes) of binary choices. Typically the similarity
between the voting records of the individuals (similarity between rows) is used to place the
individuals on a dimension and the similarity between the columns is used to place the votes.
Clearly, changing a column will affect the placement of all the individuals and changing a row will
affect the placement of all the votes. If the individual placements change, then the cutting points
could change thereby changing some of the ¢’s. Hence, the ¢’s are not independent. Furthermore,
any scaling/projection technigue will—much like eigenvalue-eigenvector decomposition—tend to
place the first dimension through the major axis of the point cloud. Consequently, if the ¢’s are
obtained by projecting onto this first dimension, then the €’s will be biased downward.

This dependency problem is inherent in any empirical method of projection and the seriousness
of the problem is a function of sample size. The larger the number of voters/votes, the less the
effect from changing one voter/vote and the closer the observed ¢ wili be to the true e. The
relationship between the sample size and the degree of dependence of the errors is outside the
scope of this paper.

Figure 5 graphs the geometric mean likelihoods (i.e., the log likelihood divided by the number
of votes and exponentiated) for N = 2 and N = 3 for all 99 Congresses calculated from the two €
vectors. To reduce the clutter in the figure, we show the graphs for N = 4 and N = 5 only when
they are greater than either N = 2 or N = 3.

The striking fact about Figure 5 is the clear dominance of N = 2. For every Congress since
1853, the likelihood function peaks at N = 2. The likelihood of ¥ = 3 becomes closer to
N = 2 after Werld War I and almost surpasses it during the 85th Congress. Prior to 1853
N = 2 predominates except for the Era of Good Feeling (approximately the 14th through the

randomly drawing the policy outcome pairs from within the hypersphere. The first dimension of the space was
used as the projection dimension and for each artificial vote, ¢ was found by testing every possible cutting point
and utilizing the point which minimized ¢. Finding the best possible point is easy. The number of possible cutting
points is equal to the number of voters. To see this, let p be the number of voters. The cutting point could be

between any adjacent pair of voters for p — 1 points, and at the end of the projection dimension for the P point.
For the final case, ¢ = m.
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Figure 5. Likelihoods for U.S. HOUSE.

19" Congresses) and the Congress after the compromise of 1850.7 However, the size of the House
in the 18*" and early 19" centuries varied from 66 members to around 200 members so these
earlier results cannot be judged to be as reliable as those for the 20" century.

The graphs for the likelihoods given by the €’s from the two different scaling techniques are
almost identical. Given that it is reasonable to assume that the ¢’s from D-NOMINATE are
inflated and those from the Guttman scaling are deflated, then the likelihoods computed using
the €’s from D-NOMINATE should be biased upwards in terms of N while those from the Guttman
scaling should be biased downwards. Indeed, if we included the graphs for N=4and N=51in
Figure 5 then this effect shows up in three of the earlier Congresses—the 17, 19th, and 3274, For
example, the order of the likelihoods for the 17" Congress was 5-4-3-2 using the D-NOMINATE
€’s; while using the Guttman scaling ¢’s the order was 3-4-2-5.

5. CONCLUSION

The purpose of this paper was to develop a new approach to the problem of determining the
dimensionality of a spatial voting model. Determining the dimensionality of a matrix of binary
choice data with traditional scaling techniques (e.g., factor analysis or multi-dimensional scaling)
is difficult because these techniques use measures of fit that always improve with the number of
dimensions being estimated. A decision that & is the correct number of dimensions is really a
decision about the significance of the rate of the rate of change of the measure of fit—namely, the
increase in fit from & ~ 1 to k dimensions is more “significant” than the increase in fit from k to
k+1 dimensions. This decision is further complicated by the fact that the number of parameters
must increase with N because an additional coordinate for each individual must be estimated for
each additional dimension. .

Our approach is independent of the estimation method. We assume a uniform distribution of
voters through an N-dimensional unit hypersphere. We assume perfect spatial voting with equally
salient dimensions and solve for the projection of this perfect voting onto one dimension and the
resultant classification error. We derive the probability density function over the classification
errors which can be used to calculate the likelihood that a sample of votes was drawn from an
N-dimensional hypersphere. Qur Monte-Carlo investigation into the properties of this likelihood
function shows that it can be used reliably for low N with small sample sizes of both voters and
votes. For N > 4, somewhat larger sample sizes of voters insure greater reliablity.

TFor a substantive discussion of the apparent multi-dimensionality of roll call voting during these periods, see
Poole and Rosenthal [1989, 1991].
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The likelihood function we have developed can serve as a useful null model for evaluating
estimated spatial models. The results of our empirical application to roll call voting in the U.S.
House of Representatives, support the recent body of empirical work on roll call voting which
argues for low dimensionality.
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APPENDIX

1. Introduction

In this appendix we derive the relationships between ¢ and ¢, m and ¢, and the likelihood functions, h(¢) and
g(e) for all N. We also show proofs that the cutting plane (defined below) minimizes the classification error; that,
with fixed m, as N increases, r decreases; and that as N increases, the point masses converge to 1 — 2m.

We assume that the disiribution of voters is uniform through the N-dimensional unit sphere. Choices are binary
0 that the N-dimensional sphere is divided into two regions on every vote. The minority is represented by the
upper m percent of the volume of the sphere and the majority is represented by the lower 1 — m percent of the
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hypersphere. We refer to the hyperplane that separates the two regions as the boundary plane and we refer to
the axis that is orthogonal to the boundary plane as the z-azis. The distance up the z-axis from the origin to the
boundary plane is denoted as vy, .

Without loss of generality, the classification dimension is fixed and passes through the center of the hypersphere.
For a fixed m, the classification error is a function only of the angle, ¢, between the z-axis of the hypersphere and
the classification dimension.

2, Derivation of ¢(¢)

The basic tool of our derivation is the uniform density through the N-dimensional unit sphere, parameterized
in polar coordinates. This can be achieved by starting with a uniform density in a N-dimensional rectanguniar
coordinate systern and then transforming it to N-dimensional polar coordinates,

A point (r,a1,02,...,0N_3,0) in the N-dimensional polar coordinate system, where

0<r, 0L <7...,0€an_3 <7, 0<d<2m,
is mapped ta the point (¥1,%2,...,¥n) in the N-dimensional rectangular coordinate system by the transformation:

y1 =rcosfsinog sinog...siney_3 sinay.s

y2 =rsindsine sinoz ... siney_3 sinay_2
y=rT cosag sinaz...sinoy_3 siney_2
(A.1}
YN—1=T7 cosor 3 Sinc o
yYN=T cosSC ..
The Jacobian, Jpy, of this transformation is
Iy = r¥ 1 sin{og }sin?{o)...sin™ 2 (anw—_2). (A.2)

The volume and surface area of the N-dimensional unit sphere will be denoted by Vi and Sy, respectively.
The equations for Vi and Sy are

N2
S T(F+y
N=zNi2
C(F+1)

(A.3)

Sy = (A4)

When using polar coordinates, it is critical that the model be correctly oriented. With N-dimensional polar
coordinates there are three “types” of dimensions which must be considered. The first ranges from 0 to % and
will be denoted by 8. This is the angle which sweeps around the classification dimension. The second, which is
the radius, r, ranges from 0 to 1. Finally, the remaining N — 2 dimensions each range from 0 to 7 and will be
denoted ay, ag,..., o g+ The ordering of these N — 2 dimensions is at times important, If this is the case, then
the “last” of these N — 2 dimensions will be denoted by 4.

Because the classification error, e($), is a function only of the angle between the z-axis and the classification
dimension, the general problem reduces to looking at cross sections containing the classification dimension and
the z-axis, By symmetry attention can be limited to 4€(0, %)

The point where the dassification dimension intersects the boundary plane of the hypersphere will be designated
the classification point. The cutting plane is the hyperplane that passes through the classification point and is
orthogonal to the classification dimension. The classification error is the percent of the hypersphere's volume that
is bounded between the boundary plane and the classification plane. The cutting plane minimizes the classification
error. All other hyperplanes orthogonal to the classification dimension but not passing through the classification
point will produce a larger classification error than the cutting plane. We prove this below.

If cos™1(rm) € ¢ € Z, the classification error is the entire minority volume. This corresponds to the error
being minimized by classifying all voters into the majority; that is

ed)=m cos™(rm) < ¢ < %

If0 < ¢ < cos™rm), then the classification error is the sum of two volumes. One volume represents voters in
the minority that are incorrectly classified in the majority and the other volume represents voters in the majority
that are incorrectly classified in the minority. One way to calculate the percent of the volume of the hypershpere
that is misclassified is to switch the volume associated with the misclassified majority with a comparable valume
in the minority. This highlights the fact that the classification error must always be less than or equal to m. To
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P Cutting plane

Classification Dimension

Figure A.1. Error and minority regions.

calculate the classification error, subtract from m the percent of the volume of the hypersphere that corresponds
to the remaining correctly classified volume in the minority region.

For example, Figure A.1—which duplicates Figure 2 in the text—shows what this process looks like for two
dimensions. The total classification error is the sum of E; and Ez and the minority region is the sum of E;, M,
M, and M3. Region M1, which is in the correctly classified minority region, is the same size as E;. Consequently,
if we switch regions E2 and Mj then the classification error is equal to m — 2M2 because My = M3. Hence our
problem reduces to finding the general formula for the volume of M7 for any N.

This volume can be indexed along the dimension in the cross section that is orthogonal to the classification
dimension and passes through the origin. Figure A.2 shows how this is accomplished. In Figure A.2 we label the
axes of the cross section z and y respectively. This enables us to write the equation of the line bordering Mz as
¥ = r; secd -+ (tan ¢)x. With this line equation it is simple to solve for the coordinates of the point of intersection
of the line with the circle. In particular, the » axis coordinate is cos $+/1 — r2, — Tm sin ¢,

We now can write the limits for the integral which will yield the required volume corresponding to Mz. In
particular, let pyy be an index which ranges from 0 to ¢os $1/1 — r2, — rr, sin ¢. At each point, px, of this index
(the “x” dimension in Figure A.2) the cross section through the N-dimensional sphere is an N — 1-dimensional
sphere with radius /1 — p%; (the “y" dimension in Figure A.2). The volume associated with the correctly classified
region is the dome above rp, sec ¢ + {tan $)pN. Hence, to obtain the required volume, we integrate py from 0 to
cos ¢4 /1 — r2, — rs sin ¢; and, for each py, we integrate from rm sec ¢+ (tan¢)py to /1 — p%;. The entire result
is then multiplied by 2 to obtain the volume associated with 2Mz .

Our problem therefore reduces to the calculation of the upper dome of an (n — 1)-dimensional sphere. This is a

simple problem in geometry. Let the radius of the (N — 1)-d1mensmna.l sphere be r. The volume of the dome that
is s units above the equator is given by

r N-2
VN—?] (\ fr?— "frv-x) dpN—1 (A.5)

The volume in the N-dimensional sphere that corresponds to the classification error is m minus the percent of
the hypersphere's volume that is in the minority region. Using equation (A.5) and the index we developed above,
the classification error function, e(¢), for 0 < ¢ < cos™1(rm} can be written as

1-r3, —rm #n g 1-p%, N—2
(d)=m- — f V- f (Vi-A-sm)  den-aden
T

m sec gt oy tan g

simplifying
cos ¢\/1—rm5 ~rmsing pq fl—p?v Nez
N -
""'?/ / (\/1—»¢JN5 —Pfu_l) dpn-1dpN,
c(qS) = Q Tm seC ¢d ppg tan ¢ (A.G)
for 0 < ¢ < cos{rm})
m, for cos~l(rs) K6 < §

Equation (A.6) is a generalization of equation (2) in the text.

MCH 16:8/9-4
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Figure A.2. Obtaining limits of integration.

_— Cutting plane

+———Classification Dimension

Figure A.3. Cutting plane demonstration,

The index, py, allows us to write the minority percentage, m, as a simple integral. The minority percentage

is the volume of the dome above the boundary plane of the N-dimensional sphere divided by the total volume.
Using (A.5) the formula for m is :

1
Viv_ N—1
’"=%N“l‘/ (Vl""?") don (A7)
Fm .
Equation (A.7) is the generalization of equation (1) in the text.

3. A Proof that the Cutting Plane Minimizes Classification Error

In the above development we assumed that the cutting plane—the hyperplane that passes through the classifi-

cation point and is orthogonal to the classification dimension—minimizes the classification error. We now offer a
minimize the dassification error.

simple geometric proof that the cutting plane does
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THEOREM A.1. The Cutting Plane Minimizes the Classification Error

PROOF. Consider Figure A.3 which is a simplified version of Figure A.1. The sum of the volumes associated with
regions E; and Ej is the classification error. Now consider an alternative hyperplane orthogonal to the classification
dimension which we represent with a dotted line in Figure A.3. By symmetry, the volume associated with region
B1 must egual the volume assocated with region B2+ B3, Hence, if the alternative hyperplane is used to calculate
classification error then the volume associated with region B3 will switch from being incorrectly classified to being
correctly classified while the volumes associated with regions B1 and B2 will switch from being correctly classified
to being incorrectly classified. However, since the volume associated with Bl + B2 is greater than the volume
associated with B3, the alternative hyperplane is worse than the cutting plane. A similar demonstration can be
given for hyperplanes above the cutting plane in Figure A.3. [ ]

4. Derivation of f(#), h(@), and gl(e)

We assume that the two alternative points on any vote are randomly drawn from within the N-dimensional
sphere, Implicit in this assumption is the assumption that the N dimensions are equally salient and that, given m,
the minority volume {upper dome) can be at any orientation vis a vis the classification dimension. In two dimensions
this is equivalent to the assumption that ¢ has a uniform distribution. In N dimensions this is equivalent to the
assumption that the z-axis can pass through any point on the surface of the sphere. To obtain the uniform density
over the surface of the N-dimensional unit sphere, we use polar coordinates as given in equations {A.1) and (A.2)
and we set ooy_n = ¢. By symmetry, we limit attention to the range 0 < 9 < ——2'-’- and multiply the result by 8.
Using the equation for the surface area, (A.4), this yields

8 4 * ¥
S__/ f j |In| =y dfdo doadas .. don_a
N Jo o Jo

8 T T l;-
S—(sinqs)N—?/ / Wroileo; den da,daa...da,.,_aj dé
N 0 0 1]

f(4)

8 . SN
= gy tenel" 3
simplifying
25N~
HORES ol CLU U ETS = (A.8)

Equation (A.B) is the generalization of equation (3) in the text.
The likelihood function, h(¢), follows immediately from equation (A.8); namely

250t gin )2 0< ¢ < cos™ (rm),
COEE SN (4-9)

_5;-.'_] (sinz)¥—2dz  cos”'{rm) < d < 3.
cos=1(rpm)

To derive g(c}, let € = y(¢) stand for equation (A.6). Solving for ¢, we get ¢ = y~1(¢). Using the univariate
change of variables formula, we can write the density over ¢ as

-1
1) | ] 0<e<m,
g(e) = z (A.10)
_?fs{\f_b;-_!,/ (sinz)¥=2 dz, c=m.
cos—1l(rm)

Equation (A.10) is the generalization of equation (6} in the text.
5. A Proofthat with Fized m, a2 N Increases, vy, Decreases

To avoid confusion, rm will be superscripted to denote its dependence on N.

THEOREM A.2. For fixed m, as N increases »X¥ decreases monotonically.
ProcF. The value 7¥Y is defined by
Vi coa! (rﬁ)

m_
VN

sin ¢d
)

Define the function: hn(¢) = 1%’;-3- sin? &. The functional form of hy(¢) implies:
1. for all N j;‘* hn($)dé =1,

2. for N # N’, hy(4) = hy, (9) at only one point in (0, §), and
3. for N> N', hn(3) > An, (3).
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Hence, for N > N’ and any 6 € (0, §),
o
[ o)y, o014 <o,
o
which implies cos=!(+N) > cos—? (r,ﬁ') or alternatively that r¥¥ < r&'
6. A Proof that as N Increases, the Point Mass Converges f0 1 — 2m

THEOREM A.3. For fixed m, the limit as N increases of the point masses is 1 — 2m.

PRooF. For fixed m and N the point mass is given by

2N j : sin® =2 gdg
Sn cos=}(ri¥}
k3 col—l(rﬁ)

=2y f sin¥ =2 gdg - ] sin¥ 7 4dg

Sn [ o

5 ~Hrp)

_¥n T Ny, AN-1) Vo, [ Um)
——SN ‘/‘: sin ¢d¢ N —";.N— A SN ¢d¢

- N-1
=1_?—(N_N‘1_)(TN—_1-)'[m+%ﬂvar£ (,/1_(,£)2) ]
N-1
=1-2m - % V‘”;: rN (\/1-—(1'#:)?) .

Nombecausea.sk—roorti“ ~ kb WehaveasN-—»oo%—-‘-'v 21:_
Combined with the fact that ¥ < 1, this implies that the last term converges to zero.

Probability
1.0

0-0 ¥ T T ¥ ' T T T T .V 1
0.0 0.1 02 0.3 0.4 05

Figure A.4. Point mass values.
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7. A Conjecture that the Point Masses Increase Monotonically With N

CoNIECTURE A.l. For fixed m, as N increases the point masses increase Montonically.

Define the point mass function

1
pt{m,N) = 2581 / sinV 2 $dg
SN cos—1(rN}y

This function is plotted for several values of N in Figure A.4.
It appears that for N > NY, pt(m, N) < pt(m, N’) for all m. However, we have not been able to obtain a proof.
Extensive searching has failed to produce a counter example.



